Euler formula and relationship between sinx , cosx and exp(x)

Euler formula is given by

eix = cos x + i sin x

A straightforward proof of Euler's formula can be derived using the Taylor power series (My previous article on Taylor's theorem)  

and

\sin{x} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots,

so

\begin{aligned} \cos{x} + i \sin{x} &= 1 + ix - \frac{x^2}{2!} - i \frac{x^3}{3!} + \frac{x^4}{4!} - \cdots \\ &= 1 + ix + \frac{(ix)^2}{2!} + \frac{(ix)^3}{3!} + \frac{(ix)^4}{4!} + \cdots \\ &= e^{ix}. \end{aligned}

\cos{x} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \cdots





Adding above two formulas


eix+eix=2cosx

and similarly

\sin{x} = \frac{e^{ix} - e^{-ix}}{2i}

For Hyperbolic functions

What is the relationship between sin x and sinh x?


Similarly cosh x = cos(ix)

De Moivre's Theorem
An important corollary of Euler's theorem is de Moivre's theorem.

(cosx+isinx)ϕ=cosϕx+isinϕx

  

No comments:

Post a Comment

Theorem 0.1. If a function f(x) is differentiable at a point x = c in its domain, then f(c) is continuous at x = c.  Note that the converse ...