Euler formula is given by
eix = cos x + i sin x
A straightforward proof of Euler's formula can be derived using the Taylor power series (My previous article on Taylor's theorem)
cosx=1−2!x2+4!x4−⋯
and
\sin{x} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots,sinx=x−3!x3+5!x5−⋯,
so
\begin{aligned} \cos{x} + i \sin{x} &= 1 + ix - \frac{x^2}{2!} - i \frac{x^3}{3!} + \frac{x^4}{4!} - \cdots \\ &= 1 + ix + \frac{(ix)^2}{2!} + \frac{(ix)^3}{3!} + \frac{(ix)^4}{4!} + \cdots \\ &= e^{ix}. \end{aligned}cosx+isinx=1+ix−2!x2−i3!x3+4!x4−⋯=1+ix+2!(ix)2+3!(ix)3+4!(ix)4+⋯=eix.
let us find the relationship between sinx ,cosx and eix
Adding above two formulas
eix+e−ix=2cosx
cosx=2eix+e−ix,
and similarly
sinx=2ieix−e−ix
For Hyperbolic functions
What is the relationship between sin x and sinh x?sinx=eix−e−ix2i
⟹isinx=eix−e−ix2
⟹isin(ix)=ei(ix)−e−i(ix)2
⟹isin(ix)=e−x−ex2
⟹−isin(ix)=ex−e−x2
⟹−isin(ix)=sinhx
Similarly cosh x = cos(ix)
De Moivre's TheoremAn important corollary of Euler's theorem is de Moivre's theorem.
(cosx+isinx)ϕ=cosϕx+isinϕx
No comments:
Post a Comment