The De Moivre's formula is given by
(cos θ + i sin θ)n = cos nθ + i sin nθ
Let us prove for n = 2
(sin(θ)+cos(θ))2= cos (2θ) + i sin (2θ)
(sin(θ)+cos(θ))2= (cos θ + i sin θ) (cos θ + i sin θ)
= cos θ cos θ - sin θ sin θ + 2i cos θ sin θ
= cos2θ - sin2θ + 2i cos θ sin θ
We knowsin (A + B) = sin A cos B + cos A sin B ................(1)
cos (A + B) = cos A cos B - sin A sin B ................(2)
if A = B
the above equations can be rewritten as
sin(2A) = 2 sin A cos A
cos(2A) = Cos2 A − Sin2A
Using above equations
(sin(θ)+cos(θ))2= cos (2θ) + i sin (2θ)
Proof of De Moivre's Theorem
Assume it is true for n=k
Let (cos θ + i sin θ)k = (cos kθ + i sin kθ) is True
Now, prove it is true for "k+1"
(cos θ + i sin θ)k+1 = cos(k+1)θ + i sin(k+1)θ
The left hand side can be written as
(cos θ + i sin θ) k (cos θ + i sin θ)
(cos kθ + i sin kθ) (cos θ + i sin θ)
cos kθ(cos θ + i sin θ) + i sin kθ(cos θ + i sin θ)
cos kθ cos θ + i cos kθ sin θ + isin kθ cos θ + i2 sin kθ sin θ
cos kθ cos θ + i cos kθ sin θ + isin kθ cos θ − sin kθ sin θ
cos kθ cos θ − sin kθ sin θ + i(cos kθ sin θ + sin kθ cos θ)
Using equations 1 and 2
cos(kθ+θ) + i sin(kθ+θ)
cos((k+1)θ) + i sin((k+1)θ)