De Moivre's Theorem

The De Moivre's formula is given by

(cos θ + i sin θ)n = cos nθ + i sin nθ

Let us prove for n = 2

(sin(θ)+cos(θ))2= cos (2θ) + i sin (2θ)

(sin(θ)+cos(θ))2= (cos θ + i sin θ) (cos θ + i sin θ)

                            = cos θ cos θ - sin θ sin θ + 2i cos θ sin θ

                            = cos2θ - sin2θ  + 2i cos θ sin θ

We know

sin (A + B) = sin A cos B + cos A sin B      ................(1)

cos (A + B) = cos A cos B - sin A sin B       ................(2)

if A = B

the above equations can be rewritten as 

sin(2A) = 2 sin A cos A

cos(2A) = Cos2 A − Sin2A

Using above equations 

(sin(θ)+cos(θ))2= cos (2θ) + i sin (2θ)

Proof of De Moivre's Theorem

Assume it is true for n=k

Let (cos θ + i sin θ)k = (cos kθ + i sin kθ) is True  

Now, prove it is true for "k+1"

 (cos θ + i sin θ)k+1 = cos(k+1)θ + i sin(k+1)θ 

The left hand side can be written as  

                 (cos θ + i sin θ) k  (cos θ + i sin θ)

                 (cos kθ + i sin kθ)  (cos θ + i sin θ)

                 cos kθ(cos θ + i sin θ) + i sin kθ(cos θ + i sin θ)

                 cos kθ cos θ + i cos kθ sin θ + isin kθ cos θ + i2 sin kθ sin θ

cos kθ cos θ + i cos kθ sin θ + isin kθ cos θ − sin kθ sin θ

cos kθ cos θ − sin kθ sin θ + i(cos kθ sin θ + sin kθ cos θ)

 Using equations 1 and 2

cos(kθ+θ) + i sin(kθ+θ)

cos((k+1)θ) + i sin((k+1)θ)

Euler formula and relationship between sinx , cosx and exp(x)

Euler formula is given by

eix = cos x + i sin x

A straightforward proof of Euler's formula can be derived using the Taylor power series (My previous article on Taylor's theorem)  

and

\sin{x} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots,

so

\begin{aligned} \cos{x} + i \sin{x} &= 1 + ix - \frac{x^2}{2!} - i \frac{x^3}{3!} + \frac{x^4}{4!} - \cdots \\ &= 1 + ix + \frac{(ix)^2}{2!} + \frac{(ix)^3}{3!} + \frac{(ix)^4}{4!} + \cdots \\ &= e^{ix}. \end{aligned}

\cos{x} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \cdots





Adding above two formulas


eix+eix=2cosx

and similarly

\sin{x} = \frac{e^{ix} - e^{-ix}}{2i}

For Hyperbolic functions

What is the relationship between sin x and sinh x?


Similarly cosh x = cos(ix)

De Moivre's Theorem
An important corollary of Euler's theorem is de Moivre's theorem.

(cosx+isinx)ϕ=cosϕx+isinϕx

  

Ours a perfect unique solar system ? Why our solar system is so unique in universe, there are nine planets circling the sun in various orbit...